

Lithium Niobate Polarization Controller

The lithium niobate polarization controller is a device that can transform any arbitrary input polarization state to any arbitrary output polarization state when suitable control voltages are applied. The device consists of a cascade of integrated polarization transformer stages — each of which can be electro-optically adjusted at high speed to act as a variable thickness waveplate with adjustable orientation. Proper control of the cascade of stages allows for endless reset-free polarization control.

The device is based on Z-propagating lithium niobate¹ which has exceptionally high stability with variations in temperature.

A high-speed, low-loss polarization controller is the key component in a polarization mode dispersion (PMD) compensator. PMD causes pulse distortion that can severely limit transmission at data rates of 10 Gb/s and higher over long distances.

EOSPACE's polarization controller is based on our proprietary exceptionally high performance lithium niobate technology developed over the last 20 years for demanding aerospace applications.

Key Features

- Low insertion loss (< 3 dB max)
- Low polarization dependent loss (PDL)
- Low bias and control voltages
- Available with 3, 4, 6, or 8 integrated stages
- Response time < 100 ns
- Slim Package
- Designed for Telcordia GR-468
- C- and L-band operation (1.55 μm)

Applications

- PMD compensation for 10 and 40 Gb/s systems
- High-speed endless reset-free polarization control
- Polarization scrambling
- High-speed polarization multiplexing

Options

- Ultra-low insertion loss
- Custom number of stages
- Custom stage lengths
- 1.06 or 1.3 micron operation

¹ US Patent 4691984 by Suwat Thaniyavarn, President of EOSPACE

Operating Information

There are many possible control techniques for this device depending on the application^{1,2,3}. For example, the required operating voltages to achieve a δ -wave plate with orientation angle $\alpha/2$ using a single stage of the device are:

 $V_{A} = 2V_{o} \cdot \delta \cdot \sin(\alpha) - V_{\pi} \cdot \delta \cdot \cos(\alpha) + V_{A,Bias}$ $V_{B} = 0 \quad (\text{Ground})$ $V_{C} = 2V_{o} \cdot \delta \cdot \sin(\alpha) + V_{\pi} \cdot \delta \cdot \cos(\alpha) + V_{C,Bias}$

Where:

- V_π is the voltage required to induce a 180 degree phase shift between the TE and TM modes for a single stage
- V_o is the voltage required to rotate all power from the TE to the TM mode, or vice versa, for a single stage
- V_{A,Bias} and V_{C, Bias} are the bias voltages required to be applied to electrodes A and C, respectively, in order to achieve zero birefringence between the TE and TM modes. Typically, V_{A,Bias} ≅ -V_{C, Bias}.
- δ is the desired waveplate retardation (in wavelengths). For example, to generate a 1/8-wave plate, set δ=1/8.
- $\alpha/2$ is the orientation angle of the waveplate

Figure 1 — Polarization Controller Waveguide & Electrode Configuration

¹ US Patent #4,691,984.

² Thaniyavarn, Suwat, "Wavelength-independent, optical-damage-immune LiNbO3 TE-TM mode converter," Optics Letters, Vol. 11, No. 1, January 1986, pp. 39-41.

³ A.J.P. van Haasteren, et al., "Modeling and Characterization of an Electroooptic Polarization Controller on LiNbO3", JLT, Vol. 11, No. 7, July 1993.

Specifications

Parameter		Min	Тур	Мах	Unit
General					
Material			LiNbO ₃		
Crystal orientation		Х	-cut, z-propagatir	ng	
Electrical/Optical ¹					
Operating wavelength		1525		1620	nm
N (number of integrated stages)		3, 4, 6, or 8			
2V _o /N (TE/TM rotation, each	n stage)		10	14	volts
V_{π}/N (TE/TM phase shift, ea	ach stage)		10	14	volts
V _{A,Bias} , V _{C,Bias}	A-version	-30		30	volta
(zero birefringence bias)	B -version	-12		12	- voits
Response time				100	ns
Optical insertion loss ²			2.5	3.0	dB
Optical return loss		40			dB
Polarization dependent loss	(PDL)			0.2	dB
Mechanical					
Input/output fiber pigtails		Single Mod	e or Polarization	Maintaining	
Fiber core/clad		9/125			microns
Fiber jacket material		900 µm l	Hytrel polyester lo	oose tube	
Fiber length		100			cm
Fiber connector		FC/UPC	standard, others	available	
Package		Designed to pass Telcordia GR-468			
Absolute Max					
Optical input power			100		mW
Operating temperature		0		70	deg C
Storage temperature		-40		85	deg C
Voltage on bias pins between adjacent pins wit or from any pin to case	hin a stage,			80	volts

Higher performance and/or custom specifications may be available upon request.

¹ All parameters specified at 1550 nm ² Includes FC/PC connector losses. Losses are lower when fusion spliced.

Package Drawing

Pin Descriptions

Pin	3-Stage	4-Stage	6-Stage	8-Stage			
	Device	Device	Device	Device			
1	1A	1A	1A	1A			
2	1B	1B	1B	1B			
3	1C	1C	1C	1C			
4	NC	NC	2A	2A			
5	NC	NC	2B	2B			
6	NC	NC	2C	2C			
7	NC	2A	NC	3A			
8	NC	2B	NC	3B			
9	NC	2C	NC	3C			
10	2A	NC	3A	4A			
11	2B	NC	3B	4B			
12	2C	NC	3C	4C			
13	NC	3A	4A	5A			
14	NC	3B	4B	5B			
15	NC	3C	4C	5C			
16	3A	NC	5A	6A			
17	3B	NC	5B	6B			
18	3C	NC	5C	6C			
19	NC	4A	NC	7A			
20	NC	4B	NC	7B			
21	NC	4C	NC	7C			
22	NC	NC	6A	8A			
23	NC	NC	6B	8B			
24	NC	NC	6C	8C			
	NC = No Connection						

All Pins Are Floating Relative to the Case

Contact Information

EOSPACE Inc. 8711 148th Ave. NE Redmond, WA 98052 (425) 869-8673 www.eospace.com

EOSPACE Inc. reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application.

Copyright © 2002 EOSPACE Inc. All Rights Reserved