Template タブ(スイープ機能)につきまして

Template タブを使うことで、ある特定の変数をスイープ(掃引)させ、その計算結果を比較することが可能です。

使い方は、下記の通りです。ここではサンプルフォルダにございます DoubleQuantumWell_6nm_nnp.in (チュートリアルは <u>https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_DoubleQW.htm</u>)を例 にご説明します。

Input	Template Template (Beta)	Simulation Output			
	1. Choose	input file			
Tem	nplate file: 📙 C:\Users\takuma.sat	o\Documents\nextna	no\My input files\Sam	ple files\nextnano++ sample files\DoubleQuantumWell_	6nm_nnp.in
Vari	iables:				
	Variable	Value	Unit	Description	
	QW_WIDTH	6.0	nm	widths of both quantum wells	
►	QW_SEPARATION	4.0	nm	separation of the QWs	
S	weep 2. Select sweep	variable		2. Charlet values	
(Single simulation filename suffix	: _modified		5. Specify values	
(Range of values variable:		~	from: to: step:	
(List of values variable: QV	SEPARATION	~	values: 1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10,15,20,30)
0	o o o cui 🕞 louis vi				
(Save to folder: C:\Users\ta	kuma.sato\Document	ts \nextnano \My input f	iles \Sample files \nextnano++ sample files	
(Save to temporary folder and add to	batch list			
[Include all modified variables in filen	ame			
	reate input files / Proce "	Create input	filos" 5	Go to Pup tab and rup batch l	ict
P	estomosesing	create input	i nies – 5	. Go to Run tab and full batch i	151
	A Number of selevant of	2	Maximum another of the	lus lines 2 6 Create file with combined	data
-	Select output data fil	ounn: 2	Maximum number of va	and lines. 0 Proces this but	
1.	Select output data fil	e 8. spec	city column a	ind lines 9. Press this but	ton
1.	Template タブを選択し	、スイープ機	能を適用したい	ハインプットファイルを、Template f	ile:隣の
	アイコンから選択します	Variables: 16	「選択可能た変	数一覧が表示されます 数	
n				フィープキルない本教を望がナナ	アアッル
۷.	Sweep IL, LIST OF VALUES &	医扒しより。	variable · »6	ヘィーノさせにい変数を迭ひます。	ししでね
	例として QW_SEPARATION	ーをスイープし	<i>、</i> ます。		
z	values: K スイープされ	トろ値 (複数)	を入力します	インプットファイルですでにスイ	ープ値を

- 3. values: に、スイープさせる値(複数)を入力します。インプットファイルですでにスイープ値を 指定している場合には、自動的に値が表示されます。
- 4. **Create input files** ボタンを押すと、values:の各入力値に対するインプットファイルが自動的に生成されます。

5. Run タブに切り替えて、3 で生成したインプットファイルのリストを Run させます。計算が終わるまで待ちます。values:の各入力値に対する計算結果が、アウトプットフォルダ内に作られます。

Postprocessing を使ったスイープ計算結果の比較

アウトプットフォルダ内の*.dat ファイル内から、ある変数(計算結果)を選び、それを縦軸、各入力 値(スイープさせた値)を横軸にしたグラフを、プロットすることが可能です。

6. Output タブで、データの形状を確認します。左から2番目のボタンを押すと、gnuplot プロットで はなくデータ形式で表示させることができます(下図)。

FILE	Edit Run	View lools	Help	
Input	Template	Template (Beta)	Simulation	Output
wf_en	ergy_spectrum_	quantum_region_G	amma_0000.d	at 3- DoubleQuantum
20.100	Fnergyle	V1	ane teaper a	
110.	Duct dy [c			
1	0.046556	343972		
1 2	0.046556	343972 075000		
1 2 3	0.046556	343972 075000 659258		

ここでは例として、Quantum > wf_energy_spectrum_*dat の最初の2行のデータを考えます。これは二 重量子井戸中の固有状態のうち、結合性軌道の固有エネルギーに該当します。2つの量子井戸が離れ れば離れるほど、波動関数の空間的重なりは小さくなり、エネルギー差は小さくなります。

7. フォルダのアイコンを押して、比較したい変数を含む*.dat ファイルを選択します。

 Number of relevant column: で比較したい変数の列を選択します。 Maximum number of value lines:
で、比較したい行数を選択します。例えば、 Maximum number of value lines: 2 を選択すると*.dat ファ イル内の最初の2行の値が取り出されます。

9. Create file with combined data ボタンを押すと、

(インプットファイル名)_(スイープした変数名)_postprocessing というフォルダが作成され、その中に *.dat ファイルが作成されます。Output タブ内でそのファイルを選択すると、以下のように、横軸を スイープ変数としたプロットが表示されます。

赤線が1行目、青線が2行目のデータです。2つの量子井戸間の距離を大きくするにつれ、固有エネ ルギーの差が小さくなることを視覚的に確認することができます。